Pseudomonas aeruginosa toxin ExoU induces a PAF-dependent impairment of alveolar fibrin turnover secondary to enhanced activation of coagulation and increased expression of plasminogen activator inhibitor-1 in the course of mice pneumosepsis
نویسندگان
چکیده
BACKGROUND ExoU, a Pseudomonas aeruginosa cytotoxin with phospholipase A2 activity, was shown to induce vascular hyperpermeability and thrombus formation in a murine model of pneumosepsis. In this study, we investigated the toxin ability to induce alterations in pulmonary fibrinolysis and the contribution of the platelet activating factor (PAF) in the ExoU-induced overexpression of plasminogen activator inhibitor-1 (PAI-1). METHODS Mice were intratracheally instilled with the ExoU producing PA103 P. aeruginosa or its mutant with deletion of the exoU gene. After 24 h, animal bronchoalveolar lavage fluids (BALF) were analyzed and lung sections were submitted to fibrin and PAI-1 immunohistochemical localization. Supernatants from A549 airway epithelial cells and THP-1 macrophage cultures infected with both bacterial strains were also analyzed at 24 h post-infection. RESULTS In PA103-infected mice, but not in control animals or in mice infected with the bacterial mutant, extensive fibrin deposition was detected in lung parenchyma and microvasculature whereas mice BALF exhibited elevated tissue factor-dependent procoagulant activity and PAI-1 concentration. ExoU-triggered PAI-1 overexpression was confirmed by immunohistochemistry. In in vitro assays, PA103-infected A549 cells exhibited overexpression of PAI-1 mRNA. Increased concentration of PAI-1 protein was detected in both A549 and THP-1 culture supernatants. Mice treatment with a PAF antagonist prior to PA103 infection reduced significantly PAI-1 concentrations in mice BALF. Similarly, A549 cell treatment with an antibody against PAF receptor significantly reduced PAI-1 mRNA expression and PAI-1 concentrations in cell supernatants, respectively. CONCLUSION ExoU was shown to induce disturbed fibrin turnover, secondary to enhanced procoagulant and antifibrinolytic activity during P. aeruginosa pneumosepsis, by a PAF-dependent mechanism. Besides its possible pathophysiological relevance, in vitro detection of exoU gene in bacterial clinical isolates warrants investigation as a predictor of outcome of patients with P. aeruginosa pneumonia/sepsis and as a marker to guide treatment strategies.
منابع مشابه
Contribution of Streptokinase-Domains from Groups G and A (SK2a) Streptococci in Amidolytic/Proteolytic Activities and Fibrin-Dependent Plasminogen Activation: A Domain-Exchange Study
Background: Streptokinase (SK), a heterogeneous plasminogen (PG) activator (PA) protein from groups A, C, and G streptococci (GAS, GCS, GGS, respectively) contains three structural domains (SKα, SKβ, and SKg). Based on the variable region of SKβ, GAS-SKs (ska) are clustered as SK1 and SK2 (including SK2a/SK2b), which show low and high fibrinogen (FG)-dependent PG activation properties, respecti...
متن کاملNebulized Fibrinolytic Agents Improve Pulmonary Fibrinolysis but Not Inflammation in Rat Models of Direct and Indirect Acute Lung Injury
BACKGROUND Critically ill patients frequently develop acute lung injury (ALI). Disturbed alveolar fibrin turnover, a characteristic feature of ALI, is the result of both activation of coagulation and inhibition of fibrinolysis. Nebulized fibrinolytic agents could exert lung-protective effects, via promotion of fibrinolysis as well as anti-inflammation. METHODS Rats were challenged intratrache...
متن کاملAssociation between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review
Pseudomonas aeruginosa uses a complex type III secretion system to inject the toxins ExoS, ExoT, ExoU, and ExoY into the cytosol of target eukaryotic cells. This system is regulated by the exoenzyme S regulon and includes the transcriptional activator ExsA. Of the four toxins, ExoU is characterized as the major virulence factor responsible for alveolar epithelial injury in patients with P. aeru...
متن کاملCoordinated induction of plasminogen activator inhibitor-1 (PAI-1) and inhibition of plasminogen activator gene expression by hypoxia promotes pulmonary vascular fibrin deposition.
Oxygen deprivation, as occurs during tissue ischemia, tips the natural anticoagulant/procoagulant balance of the endovascular wall to favor activation of coagulation. To investigate the effects of low ambient oxygen tension on the fibrinolytic system, mice were placed in a hypoxic environment with pO2 < 40 Torr. Plasma levels of plasminogen activator inhibitor-1 (PAI-1) antigen, detected by ELI...
متن کاملپتانسیل آنتیپلاسمینوژن منوکلونال آنتیبادی در دستکاری دو سیستم فیبرینولیز و آنژیوژنز
Background: Plasminogen has a central role in fibrinolyrtic system can activate through various activators (PAs) to its active form plasmin and perfoem its vital function that is fibrin clot lysis. Furthermore the fibrinolyrtic system plays a major role in angiogenesis. The fibrinolyrtic system activation control cell migration and invasion. In addition to this, plasmin regulates tumor growth. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2011